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Dispersion in poroelastic systems
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We address one key source of the known discrepancies between theory and experiment in poroelasticity, i.e.,
the fact that Gassmann’s equations for the bulk and shear moduli predict that the shear modulus is independent
of the saturating fluid properties, whereas it is observed on the contrary that at high enough frequencies the
shear modulus can in fact depend on the fluid’s elastic properties in many porous materials. One clue to
understanding this behavior comes from effective medium theory, which shows that the shear modulus does
depend on the fluid properties in many circumstances. In comparison to values predicted by effective medium
theory, Gassmann’s equations predict different, smaller values for both the effective bulk and shear moduli of
porous media. Sorting through these apparent~but not actual! disagreements among theory and theory, and
theory and experiment is the main thrust of the paper.
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I. INTRODUCTION

Velocity dispersion is an inevitable consequence of
tenuation in real systems. For example, Aki and Richards@1#
show how causality~the requirement that the effect mu
always follow—never precede—the cause! leads to the
Kramers-Kronig relations between the real and imagin
parts of the wave number, or equivalently, the velocity o
wave propagating through a dispersive medium. The velo
acquires an inherent frequency dependence in such syst
and this frequency dependence is what we mean by ‘‘dis
sion’’ in the present context. We will assume the reade
familiar with this result, and not elaborate any further he

The consequences of dispersion are very importan
seismology and acoustics, because dispersion makes re
ciliation of field data with laboratory data much more dif
cult than it would be if there were no dispersion. The exp
ration seismic band is from about 10–100 Hz, wh
earthquake seismology usually considers frequencies f
about 10 Hz down. Well-logging tools usually work in th
high sonic range, from about 1–20 kHz. On the other ha
laboratory experiments are most often performed in the
trasonic range from about 100 kHz to 2 MHz. So the gap
frequency between laboratory and field data can be as hig
five or six orders of magnitude, but efforts to produce lab
ratory data below the ultrasonic range have been car
through successfully using resonance bar methods, fo
oscillation methods, and some other methods. When they
available, these types of laboratory data are often the m
useful ones to us because we can make direct compari
between field and laboratory systems at the same freq
cies. But often we do not have this luxury, so we need
understand both the mechanism~or possibly mechanisms!
and the consequences of dispersion in these earth or po
rock systems in order to aid the interpretation~and inversion!
of field data.

Probably the most common choice of theory used in
1063-651X/2001/64~1!/011303~16!/$20.00 64 0113
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forts to explain poroelastic data is Biot’s theory@2#. In a
series of laboratory ultrasonic wave propagation experime
on porous glass immersed in a water bath, Plona@3# showed
20 years ago that many of the predictions of Biot’s theory
wave propagation in poroelastic media could be observed
these materials. Predictions included the existence of a
ond ~slow! compressional wave, the magnitude of the slo
wave velocity and attenuation, and the resulting enhan
attenuation of the faster compressional wave that co
sponds to the usual viscoelastic mode in such media. C
Berryman, and Hedstrom@4# and Johnson, Plona, an
Kojima @5#, together with many others by the present tim
have shown that the theory explains these and similar la
ratory data on synthetic materials remarkably well.

On the other hand, there are many examples of real e
materials for which Biot’s theory does not seem to expla
the dispersion very well and it would therefore be most u
ful to clarify what the physical issues are that limit the use
the theory. Various additions and corrections to Biot’s theo
have been attempted including treating the porous med
as granular@6#, treating the elastic medium as nonlinear@7#,
treating the pore space as a double-porosity system@8# so
that high permeability fractures and low permeability b
high storage matrix porosity coexist in the theory, and co
sidering the effects of both partial and patchy saturation@9#.
Each of these approaches has something important to
about dispersion in poroelasticity systems. But it, nevert
less, remains difficult to explain some of the data from fi
principles.

The main purpose of this paper is therefore to clarify a
other of the outstanding questions about dispersion in
roelastic systems, such as those described by Biot’s the
@2#. The work to be summarized here was motivated in p
by ongoing studies of shear velocity in partially saturat
porous systems@9#, but partial saturation will not play any
role in the present discussion. Our approach will be to rec
sider a basic result in the theory, i.e., Gassmann’s re
©2001 The American Physical Society03-1
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@10,11# that the effective shear modulus of the porous, flu
saturated system is independent of the presence of flui
the pores. Gassmann’s result will be compared and c
trasted with the effective-medium results for inhomogene
elastic systems. We find that, even though these two
proaches are both at least nominally low frequency metho
Gassmann’s results differ from the effective-medium the
results because they are quasistatic and actually pertinen
lower frequency band than is allowed for or considered
the effective-medium theory approach.

We can gain a sense of the physics behind the result
follow by first stressing the main physical difference b
tween the time scales for Gassmann and effective med
theory. Gassmann’s argument assumes fluid pressure e
bration for drained~untrapped fluid! moduli, but not for und-
rained ~trapped fluid!. Pressure equilibration is a diffusiv
process having a time scaletD.L2/D, whereL is a charac-
teristic length~usually chosen to be either a typical grain si
d, or the wavelengthl, or a correlation lengthl! andD is the
pertinent diffusion constant~directly proportional to fluid
permeability of the system!. In contrast, the elastic-effective
medium theory has the principal time constanttV.L/vp ,
wherevp is the compressional wave velocity~i.e., the fastest
acoustic mode if there is more than one! of the system. For
comparison, the characteristic time scale for applicability
Biot’s theory @2# is determined byf <0.15f c.2.5 MHz,
where the critical frequency isf c5fh/2pr fk, with ~for ex-
ample! porosityf50.2, viscosityh51 cP51023 Pa s, fluid
density r f5103 kg/m3, and fluid permeabilityk51 mD
.10215 m2. Table I supplies a comparison of these tw
mechanisms valid over the frequency range of most inter
We use representative values such asvp55 km/s andD
.kK f /hf.1022 m2/s ~see Berryman@12# or Chandler and
Johnson@13#!, where the bulk modulus of the fluid is take
asK f52.0 GPa, and the porosityf50.2. The results for this
example show that the characteristic times satisfytD.tV for
all frequencies belowf 50.15f c , which may be viewed as
the limit of applicability of Biot’s theory.At highest frequen-
cies, when the wavelengthl approaches the grain sized, it is
clear that the diffusion approximation must break down,
the apparent speed of diffusion cannot exceed the spee
sound in the medium~see Morse and Feshbach@14#!. There-
fore, we must replacetD by tD* .d/v f , since it is the wave
speed in the fluid that limits in the pressure equilibration
this frequency band. For all lower frequencies, the diffus

TABLE I. Comparison of time scales for wave propagation a
diffusion at frequencies below Biot’s critical frequency. Paramet
used werevp55 km/s, v f51.5 km/s, D51022 m2/s, and d
51024 m. The times aretV5d/vp andtD5d2/D. The wavelength
becomes comparable to the grain size atf 550 MHz, but the valid-
ity of Biot theory is limited to f <2.5 MHz. For any set of these
physical parameters, the fluid pressure equilibration time is lim
by the speed of sound in the fluid, so the ratiov f /vp is the pertinent
bound on the ratio.

tV ~s! tD ~s! tV /tD v f /vp

231028 131026 231022 0.3
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time is longer than the time for the wave to pass. We c
clude from this that the changes in the medium induced
the sound wave will not be significantly altered by the te
dency toward fluid pressure equilibration except at relativ
high frequencies. Thus, Gassmann’s results should appl
all these lower frequencies. It will be our purpose here
motivate and explore the expected and observed deviat
from Gassmann’s predictions as the higher frequencies
approached.

Section II will rederive Gassmann’s basic result in p
roelasticity for a fluid-saturated, closed system. Section
will present effective-medium results for the same syste
Section IV will show in more detail why these methods a
ply to different frequency bands, and therefore can differ
this system. Section V presents an analysis that reconc
the two results. Section VI summarizes our conclusions.

II. GASSMANN’S EQUATIONS FOR ISOTROPIC POROUS
MEDIA

One of the most fundamental results in poroelasticity c
cerns the mechanical behavior of an enclosed, undrai
fluid-saturated system. Exact results for the effective b
and shear moduli of such systems were derived 50 years
by Gassmann@10,11#.

A. A derivation of Gassmann’s equations

We now present a concise and complete derivation
Gassmann’s famous results. The analysis of this sectio
limited to isotropic systems, but it can be generalized w
little difficulty to anisotropic systems@10,15,16#. Gas-
smann’s equations@10# relate the bulk and shear moduli of
saturated isotropic porous, monomineralic medium to
bulk and shear moduli of the same medium in the drain
case and show furthermore that the shear modulusmustbe
mechanically independent of the presence of the fluid.
important implicit assumption is that there is no chemic
interaction between porous rock and fluid that affects
moduli. Gassmann’s paper is concerned with the quasis
~very low frequency! analysis of the elastic moduli.

In contrast to simple elasticity@17# with stress tensors i j
and strain tensorei j , the presence of a saturating pore flu
in porous media requires the introduction of conjugate va
ables associated with the fluid. The pressurepf in the fluid is
the new field parameter that can be controlled. Allowing s
ficient time ~equivalent to a low frequency assumption! for
global pressure equilibration will permit us to considerpf to
be a constant throughout the percolating~connected! pore
fluid, while restricting the analysis to quasistatic process
The changez in the amount of fluid mass contained in th
pores is the new type of strain variable, measuring how m
of the original fluid in the pores is squeezed out during
compression of the pore volume, while including the effe
of compression or expansion of the pore fluid itself due
changes inpf . It is most convenient to write the resultin
equations in terms of compliancesSi j rather than stiffnesse
Ci j , so for an isotropic porous medium in principal coord
nates the basic equation to be considered takes the form

s

d

3-2
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S e11

e22

e33

2z
D 5S S11 S12 S12 2b

S12 S11 S12 2b

S12 S12 S11 2b

2b 2b 2b g

D S s11

s23

s33

2pf

D . ~1!

The constantsb andg appearing in the matrix on the righ
hand side~RHS! will be defined later in this section. Fo
now, they are defined implicitly by Eq.~1! as coefficients
that can be measured by observing the changes in sy
strain caused by changes in system stress.

The fundamental results of interest are found by cons
ering the saturated~and ‘‘undrained,’’ meaning that the liq
uid is trapped and cannot escape from the volume! case such
that

z[0, ~2!

which is the undrained condition. Fluid cannot escape
cause of assumed jacketing materials at the boundaries
this is equivalent tok505D and therefore very low fre-
quency. From Eq.~1!, it follows that the~average! pore pres-
sure must respond to external applied stresses accordin

pf52
b

g
~s111s221s33!. ~3!

Equation ~3! is often called the ‘‘pore-pressure buildup
equation ~see Skempton@18#!. Then, using result~3! to
eliminate bothz andpf from Eq. ~1!, we obtain

S e11

e22

e33

D 5S S11
sat S12

sat S12
sat

S12
sat S11

sat S12
sat

S12
sat S12

sat S11
sat
D S s11

s22

s33

D
5F S S11 S12 S12

S12 S11 S12

S12 S12 S11

D 2
b2

g S 1 1 1

1 1 1

1 1 1
D G S s11

s22

s33

D ,

~4!

whereSi j
sat is the desired saturated compliance including

effects of the trapped liquid, whileSi j is the drained compli-
ance in the absence of the liquid.

Since for elastic isotropy there are only two independ
coefficients~S11 andS12!, we find that Eq.~4! reduces to one
expression for the diagonal compliance

S11
sat5S112

b2

g
, ~5!

and another for the off-diagonal compliance

S12
sat5S122

b2

g
. ~6!
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If Ksat andGsat are respectively the undrained bulk and she
moduli, then standard elasticity relations@17# together with
Eqs.~5! and ~6! imply that

S11
sat5

1

9Ksat1
1

3Gsat5
1

9Kdr
1

1

3Gdr
2

b2

g
, ~7!

and

S12
sat5

1

9Ksat2
1

6Gsat5
1

9Kdr
2

1

6Gdr
2

b2

g
. ~8!

Subtracting Eq.~8! from Eq. ~7! shows immediately tha
1
2 Gsat5 1

2 Gdr , or equivalently that

Gsat5Gdr . ~9!

Thus, the shear modulus for the case with trapped fl
~undrained! is the same as that for the case with no flu
~drained! @19#. Substituting Eq.~9! back into either Eq.~7! or
Eq. ~8! gives one form of the result commonly known a
Gassmann’s equation for the bulk modulus:

1

Ksat5
1

Kdr
2

9b2

g
. ~10!

For isotropic systems, we must have Eq.~9! in order for Eq.
~10! to hold, and vice versa.

B. Alternative formulas for Ksat

To obtain one of the more common forms of Gassman
result for the bulk modulus, we now need to define the
efficientsb andg. First note that

3b[
1

Kdr
2

1

Ks
[

a

Kdr
, ~11!

where Ks is the grain modulus of the solid constitue
present anda is the Biot-Willis parameter@19#. Furthermore,
the parameterg is related through Eq.~3! to Skempton’s
pore-pressure buildup coefficient@18# B, so that

3b

g
5B. ~12!

Substituting these results into Eq.~10! gives

Ksat5
Kdr

12aB
, ~13!

which is another form@20# of Gassmann’s standard result fo
the bulk modulus, which will be useful to compare to o
later results for the shear modulus.

One other form of Gassmann’s equation for the bu
modulus@10,11# is
3-3
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Ksat5Kdr1
a2

~a2f!/Ks1f/K f
. ~14!

This form highlights how the undrained constantKsat differs
from the drained constantKdr . Heref is the porosity andK f
is the fluid bulk modulus. We could alternatively have ch
sen to replace the first term on the RHS byKdr5(1
2a)Ks . Then, all the geometrical and volume fraction i
formation is contained ina andf, while the pertinent con-
stituent properties are justKs andK f .

Next we consider what effective-medium theory has
say about the same physical system.

III. EFFECTIVE MEDIUM THEORY

Porous media are inherently inhomogeneous becaus
the voids~pores! that may contain either air or some type
liquid, such as water or oil. Typical naturally occurring p
rous media are also random, as the pores are not distrib
in any organized~periodic! way throughout the porous body
So it is natural to consider homogenization theory, or equi
lently effective medium theory, to estimate physical co
stants such as the elastic constants of porous media.
significant difference between effective-medium theory a
the methods used by Gassmann is that the constituents o
inhomogeneous medium are essentially fixed relative to
another; i.e., when studying elastic constants, we often u
welded-contact assumption: two points in contact remain
contact throughout a deformation. This assumption implie
no-slip boundary condition between fluid present in the po
and the solids surrounding~and therefore defining the bound
aries of! the pores. Gassmann, on the other hand, assu
that the drained porous medium has a finite fluid permea
ity, so pores are connected and fluid is free to move in
out of the pores depending on the state of elastic stress
fluid pore pressure. This difference is important, but—as
shall see—it is not the only source of disagreement betw
the two approaches.

To highlight the differences in the results, we will fir
provide a quick derivation of a particular effective-mediu
theory ~the CPA, or coherent potential approximation! and
make some observations about connections between
theory and rigorous bounds. Then we will study some r
evant properties of the so-called@21,22# ‘‘canonical func-
tions’’ that can be used to study and compare both rigor
bounds and the effective-medium theory estimates of ela
constants. Then, we will show how Gassmann’s results
into the same framework.

A. Derivation of the CPA

Probably the best known of all the effective-medium the
ries in elasticity is the‘‘self-consistent theory.’’ One formu
lation of these results was presented by Hill@23# and Budi-
ansky @24#. For the special case of spherical inclusio
~which is the only case we will consider here!, these results
are identical to results obtained later by Korringaet al. @25#
and Berryman@21,22,26# using arguments based on the c
herent potential approximation from the theory of alloys~see
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Gubernatis and Krumhansl@27# and references!. But these
two ‘‘self-consistent’’ approaches can give very different r
sults when the inclusions have shapes other than spher
The CPA has the advantage that it is known to provide e
mates that always lie between known rigorous boun
@22,28# such as the Hashin-Shtrikman bounds@29#, whereas
the other ‘‘self-consistent’’ formulation is known to violat
the bounds in some cases~though not for spheres!. The CPA
has also been generalized recently for use at higher freq
cies by Kaelin@30# and Kaelin and Johnson@31,32#. Since
our goal here is to elucidate a point in poroelasticity theo
it will be adequate to concentrate on the noncontrover
case of spherical inclusions. Useful reviews of the effecti
medium topic with emphasis on geophysical~rock physics!
applications for further reading are those of Watt, Davi
and O’Connell@33# and Berryman@34#.

The CPA formulas arise this way from an argument, e
of Berryman@21#: If we imagine a scattering experiment i
which a single sphere of one inclusion material is imbedd
in a host matrix, then for a plane compressional wave in
dent on this sphere, the two pertinent scattering coefficie
at infinity are

B0~Km ,Ki ,Gm!5
Km2Ki

3Ki14Gm
~15!

and

B2~Gm ,Gi ,Km!5
20Gm~Gi2Gm!/3

6Gi~Km12Gm!1Gm~9Km18Gm!
,

~16!

where the moduli for the surrounding matrix material areKm
~bulk! and Gm ~shear!, and the moduli for the spherical in
clusion areKi and Gi . Then imagine that our composit
contains inclusionsi 51, . . . ,n, where n>2, and that the
scattering experiment is being performed at such low f
quencies~and therefore long wavelengths! that the precise
locations of the individual scatterers have no special eff
on the results. Then, we can suppose~see Fig. 1! that the
composite~scattering! medium is imbedded in an adjustab
matrix materialm5* , such that each individual scattere
sees all the other scatterers as composing this matrix. T
the composite inclusion, when imbedded in the adjustab*
matrix, should actually produce no scattering at all at infin
if the single-scattering coefficients satisfy

(
i 51

n

f iB0~K* ,Ki ,G* !u* 5eff50 ~17!

and

(
i 51

n

f iB2~G* ,Gi ,K* !u* 5eff50, ~18!

where thef i ’s are the volume fractions of all the constituen
in the composite and thereforeS i f i51. The particular
choices of the adjustable moduli that cause the RHSs of E
~17! and ~18! to vanish are then defined to be the CP
3-4
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effective-medium constants. Equations~17! and~18! provide
a coupled set of equations that uniquely~Note: the only
known exceptions to uniqueness occur when some of
constituent moduli vanish—see Berryman@21,26#! deter-
mine the effective elastic constantsKeff5K* and Geff5G* .
These formulas may be written in many different ways, b
the one that we prefer here has the form

1

Keff14Geff/3
5(

i 51

n
f i

Ki14Geff/3
5 K 1

K~x!14Geff/3L
~19!

and

1

Geff1Feff 5(
i 51

n
f i

Gi1Feff 5 K 1

G~x!1FeffL , ~20!

whereF[G(9K18G)/6(K12G), with Feff being the same
formula with all physical constants replaced by those w
‘‘eff’’ superscripts. The notation̂ •& is introduced as the
volume average, and the RHS, can then easily be show
be identical to the preceding quantity in each of the t
equations.

Note that Eqs.~19! and~20! are strongly coupled, but th
pair of equations can be solved easily by iteration. Also n
that the resultingGeff is the same for drained and undrain
cases only ifFeff is the same, which would require addition
ally that Keff be exactly the same for the drained and un
rained cases.

FIG. 1. Schematic diagram for the coherent potential appro
mation ~CPA! concept. The true composite is replaced by a la
sphere~dashed circle! containing spherical inclusions of type-1 an
type-2 constituents in the proper relative proportions. The ma
~type* ! is composed of a material with adjustable elastic consta
When the adjustments have been made so there is no net scatt
the composite and the surrounding matrix presumably have
same effective properties.
01130
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B. Hashin-Shtrikman-Walpole bounds

Now we merely quote the results for the Hashi
Shtrikman bounds@29# in elasticity. These results take
form very similar to those for the CPA for spheres. T
symbols for the Hashin-Shtrikman upper bounds areKHS

1 and
GHS

1 , and for the lower bounds the pluses are replaced
minuses. The results are

1

KHS
6 14G6/3

5(
i 51

n
f i

Ki14G6/3
5 K 1

K~x!14G6/3L
~21!

and

1

GHS
6 1F6

5(
i 51

n
f i

Gi1F6
5 K 1

G~x!1F6
L , ~22!

where K15maxi Ki , K25mini Ki , G15maxi Gi , G2

5mini Gi , and F6 , where all constants inF[G(9K
18G)/6(K12G) now take the same subscripts asF6 . If,
for a two-component medium, the material properties
well-ordered so that (G22G1)(K22K1).0, then equations
~21! and ~22! are known as the Hashin-Shtrikman bound
But—if the constants are not well ordered, so (G2
2G1)(K22K1),0—the formulas presented are still tru
bounds, known instead as the Walpole bounds@35–37#.
Sometimes equations~21! and~22! taken in their entirety are
called the Hashin-Shtrikman-Walpole bounds.

C. Properties of the canonical functions in elasticity

These results and others of a similar nature using man
the known bounds in elasticity~see Berryman@22#! suggest
that a single set of two functions controls the behaviors
both effective medium theories and bounds. We call th
expressions the ‘‘canonical functions of elasticity’’ becau
they occur repeatedly, and they have many useful proper
These functional properties include monotonicity as a fu
tion of the arguments, which makes them very conveni
for comparisons between and among many of the bounds
effective medium results.

We define the canonical function for the bulk modulus

L~G![ K 1

K~x!14G/3L 21

2
4

3
G, ~23!

and the canonical function for the shear modulus as

G~F ![ K 1

G~x!1F L 21

2F. ~24!

Using these definitions, equations~19! and ~20! can be re-
written as

Keff5L~Geff! ~25!

and

Geff5G~Feff!, ~26!
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respectively. Similarly, the Hashin-Shtrikman-Walpole r
sults are written as

KHS
6 5L~G6! ~27!

and

GHS
6 5G~F6!. ~28!

Both of these canonical functions are monotonic in th
arguments.@21,22,23# The argumentF of G itself has the
property thatF5F(K,G) is a nondecreasing function o
both of its arguments. Furthermore, note thatL(0)
5^1/K(x)&215KR , G(0)5^1/G(x)&215GR , which are
the harmonic means, or Reuss average@38# of these
constants. Similarly, limG→` L(G)5^K(x)&5KV ,
limF→` G(F)5^G(x)&5GV , which is the mean, or corre
sponding Voigt average@39#. Thus, the physical range of rea
arguments for these two functions produces results that li
the ranges

KR<L~G!<KV ~29!

and

GR<G~F !<GV . ~30!

It follows that

KHS
2 <Keff<KHS

1 , ~31!

since

L~GHS
2 !<L~Geff!<L~GHS

1 !, ~32!

becauseL is monotonic and

GHS
2 <Geff<GHS

1 , ~33!

which we know to be true, independent of the present ar
ments.

Finally, the canonical functions also have useful mono
nicity properties as functions of their constituents’ mod
values~not usually shown in the above argument list!. To
make these properties explicit in the notation, we will a
list the constitutents’ moduliKs , K f , and Gs in the argu-
ment list when it is important to draw attention to them. F
example, the drained bulk modulus in effective-mediu
theory from~19! is then expressed as

Kdr
eff5L~Ks ,K f50;Gdr

eff!, ~34!

and the corresponding result for the saturated modulus i

Ksat
eff5L~Ks ,K f ;Gsat

eff!. ~35!

Monotonicity of the canonical function in the fluid bul
modulus shows that

L~Ks ,K f50;G!<L~Ks ,K f ;G!, ~36!
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assuming that the usual argumentG is the same for both
expressions. By concatenating inequalities, we therefore
tain useful rigorous relations such as

L~Ks,0;Gdr!<L~Ks ,K f ;Gdr!<L~Ks ,K f ;Gsat!, ~37!

since 0<K f andGdr<Gsat and, similarly,

G~Ks,0;Fdr!<G~Ks ,K f ;Fdr!<G~Ks ,K f ;Fsat!, ~38!

sinceFdr<Fsat. We will make use of these properties in th
following arguments.

Note that the canonical functions have often played
explicit role in formulating rigorous bounds since the wo
of Milton @40#, in which he introduced they-transform
concept—closely related to, and in part motivated by,
canonical functions.

D. Gassmann’s results in terms of canonical functions

Various authors~including Endres and Knight@41# and
Kaelin @30#! have noticed that Gassmann’s equation for
undrained bulk modulus has a form similar to that of t
effective-medium theory equation~19!, or equivalently to the
Hashin-Shtrikman@29# bounds ~21!. The significance of
these observations has remained uncertain, howe
because—when making these comparisons to the CPA
has been necessary to ignore the inter-relationship betw
the bulk modulus equation~19! and the shear modulus equ
tion ~20! in order to make the similarity apparent. Takin
such a step removes the self-consistency condition rela
bulk and shear modulus, and replaces the derived result
an ad hocassumption thatKeff.L(Gdry)5Ksat. When simi-
lar observations are made relating the Hashin-Shtrikm
bulk modulus bounds to the Gassmann result, a similarad
hoc step is required, which isKHS

1 .L(Gdry)5Ksat. The ad
hocprocedure sidesteps and confuses the real issue, whi
the question: Why do the two formulas in fact disagree~i.e.,
Gassmann and effective-medium theory—or Gassmann
Hashin-Shtrikman bounds—disagree!, while having such ap-
parently similar functional forms?

To avoid making any unwarranted assumptions, we w
first of all show what is true about the Gassmann bulk mo
lus result and how it is related to the canonical functions.
do this, we will approach the subject from the direction o
posite to the one usually taken, and show that effecti
medium results can be written in a form similar to that
Gassmann’s formula. First note that~see Korringaet al. @25#
for an early application of this formula, and also Prid
Tromeur, and Berryman@42#!,

Kdr
eff5

~12f!Ks

11adrf
, ~39!

where adr53Ks/4Gdr
eff . This formula is completely equiva

lent to the canonical form for the drained caseKdr
eff

5L(Gdr
eff). In particular, we find that, when there are only tw

constituents~solid and fluid!, then the effective-medium
theory result can be written in the form
3-6
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Ksat
eff5~12x!Ks1

x2

~x2f!/Ks1f/K f
, ~40!

where all the microgeometry dependence of the equation
pears here inx, and~coming from the coupling to the shea
modulus! is contained in the parameter

x5f
11asat

11asatf
, ~41!

where

asat[3Ks/4Gsat
eff . ~42!

Equations~40! and ~41! should be compared to

Ksat5~12a!Ks1
a2

~a2f!/Ks1f/K f
, ~43!

and

a512Kdr
eff/Ks5f

11adr

11adrf
~44!

with adr given following Eq. ~39!. Thus, it now becomes
clear that the only difference between the effective-medi
result and Gassmann’s result for the bulk modulus is de
mined by which value of the shear modulus is used
evaluating the corresponding parametera. Thus, it is a defi-
nite result that Gassmann’s equation for undrained b
modulus can be written in terms of the canonical functionL
as

Ksat5Lsat~Gdr!, ~45!

whereLsat(•)[L(Ks ,K f ;•) andLdr(•)[L(Ks,0;•). Note
the differences among Eqs.~34!, ~35!, and~45!.

By assumption, we also have for both theories~i.e., Gass-
mann and effective medium theory! that Kdr5L(Ks,0;Gdr)
and Gdr5G(Ks,0;Fdr). Gassmann treatsKdr and Gdr as
purely experimental quantities and there is no inconsiste
involved if we choose to treat theKdr andGdr from effective-
medium theory as our estimates of the drained bulk
shear moduli.

The preceding reasoning shows that it is inappropriate
decouple the effective-medium equations~25! and~26!. It is,
nevertheless, true that Eq.~45! is a correct statement of Gas
smann’s result for the bulk modulus in terms of the canon
function Lsat. From this statement, Eqs.~31! and ~32!, and
Eqs.~37! and ~38!, we find that

Kdr<Ksat<Ksat
eff ~46!

and

Gdr<G~Ks ,K f ;Fdr!<Gsat
eff . ~47!

But, we emphasize that Gassmann’s result showsGsat5Gdr
ÞG(Ks ,K f ;Fdr) when K fÞ0, and nothing should be in
ferred just from the fact that some of these quantities
expressible in terms of the canonical functions.
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IV. THE DICHOTOMY

The dichotomy is this: Gassmann’s equations are low
quency~pressure equilibration through diffusion, see Tab
I! and predict that

Ksat5Lsat~Gdr! and Gsat5Gdr , ~48!

whereas effective-medium theory~which is also for low fre-
quencies, requiring long enough wavelengths so that sig
cant constituent correlations occur over scales smaller t
the wavelength! for apparently the same problem predic
that

Ksat
eff5Lsat~Gsat

eff! and Gsat
eff5Gsat~Fsat

eff!. ~49!

Furthermore, because the canonical functionsL and G are
monotonic, it is easy to show from the foregoing results th
wheneverK f.Kair.0,

Gsat,Gsat
eff ~50!

and, therefore,

Ksat,Ksat
eff . ~51!

How do we explain that these two low frequency theor
clearly differ? Even if the numerical difference were n
great, the mere existence of such a difference~assuming both
theories are correct, so it is a real difference! shows that there
must be dispersion in such systems. Dispersion also imp
attenuation because of Kramers-Kronig relations~see Aki
and Richards@1#!, more attenuation of sound waves in
poroelastic system than we might expect from other con
erations.

The reason for this dispersion is that the Gassmann
proach is really quasistatic, and therefore applies at
tremely low frequencies, whereas the effective-medi
theory is clearly not formulated to apply at such low freque
cies. The difference arises physically from how fluid pre
sure is treated in the two approaches. Gassmann allows
fluid pressure sufficient time to equilibrate throughout t
medium, however long it takes—perhaps very long tim
indeed. The effective-medium theory does not preclude
fluid from equilibrating, but does not necessarily allo
enough time for equilibration. Time does not play an expli
role in the effective-medium theory, only an implicit one
that it must be ‘‘long enough’’ so the frequencies are lo
and the wavelengths long compared to the scale of the
crostructure. If liquids occupy isolated pockets scatte
throughout the inhomogeneous porous medium, they m
have different fluid pressures if they are not permitted su
cient time to equilibrate. In fact, the effective-medium theo
does not explicitly allow for finite~nonzero! fluid permeabil-
ity of the porous medium.

These facts suggest that there are some good reaso
think that there could be differences between Gassmann
effective-medium theories. But, so far the analysis s
leaves the technical question unresolved.
3-7
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V. RESOLUTION OF THE DICHOTOMY

One method of resolving this dichotomy might be to u
the method of multiple scales for the time-dependent vers
of this problem. In fact, this has already been done by Bu
idge and Keller@43,44#. They find the interesting~and per-
haps now not surprising! result that there are two possib
solutions to the problem. One is essentially that of Bio
theory @2# of wave propagation in poroelastic media. T
other is a set of viscoelastic equations. The difference le
ing to the two quite different results is that, when the sca
viscosity is treated as being of ordere2 ~e is the small quan-
tity!, they get Biot-Gassmann, whereas when viscosity
treated as order 1, they obtain the viscoelasticity equat
instead. These results are consistent with the need for
approaches and two rather different results, even though
are long wavelength, low frequency results.

We will now take a different approach to show how t
effective-medium theory result can also arise fro
Gassmann-style considerations.

A. What we need to show

The crux of our problem is to show how the shear mod
lus can be independent of the fluid properties at quasis
frequencies, yet become dependent on them at some
higher ~but still low! frequencies.

Physically, we know what must be happening in t
effective-medium theory to give rise to the effects discuss
The presence of the liquid results in an increase in the s
modulus, even though the liquid shear modulus is zero. W
is that? The reason is that in an inhomogeneous med
when we apply stress or strain at the macroscopic scale,
stress or strain gets resolved locally in a complicated w
because of the inhomogeneities. It is very easy to see
this must be so in a granular medium, but is clearly also t
in most inhomogeneous media.~For an example of externa
tension being resolved into local hydrostatic compression
an inhomogeneous elastic medium containing fractures,
Bai, Pollard, and Gao@45#.! An applied external compressio
can produce a shear field locally. An applied external p
shear can produce a compression locally. This is the phys
source of the effect. If we apply an external shear to a por
medium containing liquid, it matters that the liquid is prese
and not replaced by air. It matters because the external s
can be resolved into local compression in some regions c
taining the liquid. In these regions, the liquid can support
compression~but not a shear!, and therefore the liquid store
some of the energy applied to the system by the exte
shearing force. This discussion shows qualitatively~and
physically! why the effective-medium theory predicts th
the shear modulus depends on the bulk modulus of the
uid. ~We will show explicitly how it happens in the math
ematics later in this section.! On the other hand, if the liquid
has enough time~on the diffusive time scale and finite pe
meability permits it! to move out of the way, it can relax t
a state that does not support any of the local compress
and then we have Gassmann’s result.
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So what we will be attempting to show in the remaind
of this section is how these ideas can arise and then be q
tified explicitly in the theory.

B. Why local isotropy is not sufficient

We know from the arguments given previously th
purely isotropic~micro as well as macro! poroelasticity can-
not give the effective medium result. No matter what e
happens—no matter how we try to make changes in the
roelastic coefficients to see how such effects arise—we
not be able to change the fact thatS112S125

1
2 G @recall Eqs.

~7! and ~8!#. Changes in the coupling coefficients that res
in an isotropic elastic matrix must satisfy this condition~di-
rectly related to system rotational invariance!. And this con-
dition guarantees that Gassmann’s result for the shear m
lus will always hold, e.g., compare Eq.~5! and Eq.~6!. So an
isotropic poroelastic medium that is also isotropic eve
where on themicroscalewill not help us resolve our di-
chotomy.

C. Local anisotropy

In contrast, let us now consider one of the simplest ca
of local anisotropy, i.e., transverse isotropy~TI!. We suppose
that this anisotropy could arise from many mechanisms~lo-
cal layering, or fractures/cracks!, and still produce the sam
formulas we will use in this demonstration. The elastic te
sor is not uniquely related to the microstructure. The prec
mechanism is also not really important to our present p
pose. We are trying merely to establish a link between Ga
mann’s result and the effective-medium results. We ha
shown this to be very difficult~and maybe impossible! to
establish for local~microscopic! isotropy. We want to show
that it is, however, possible for local anisotropy.

If the inhomogeneous medium is isotropic on the mac
scale, it certainly can still be anisotropic on the microsca
This fact has been used extensively in the mathematical
mogenization community, where many authors~see, for ex-
ample, Kohn and Milton@46# and Avellaneda and Milton
@47#! have studied laminates to determine realizability resu
for bounding methods. A typical physical example is an a
gregate of randomly oriented crystals~i.e., a polycrystal!,
where individual crystals or domains are locally anisotro
but the aggregate may be isotropic due to spatial avera
over orientations.

To make a clear connection with rock physics, we w
assume that, instead of being locally layered~laminated!, the
medium has randomly oriented fractures or cracks. The s
tial distribution of randomness is such that the overall m
dium is macroscopically isotropic. We will assume that the
exists a scale at which it makes sense to talk about the
rous medium’s local elastic constants, that there is a sin
fracture per representative elementary volume on this sc
and that the elastic compliance tensor can therefore be w
ten locally as that for a transversely isotropic~same as hex-
agonal symmetry! medium. The axis of symmetry differ
from location to location throughout the medium, b
locally—if the x3 direction is the local axis of
symmetry—we can write the strain-stress relations in ter
of the compliance matrix as
3-8
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e31

e12
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S11 S12 S13 2b~1!

S12 S11 S13 2b~1!

S13 S13 S33 2b~3!

2b~1! 2b~1! 2b~3! g

1

Gt

1

Gt 2 S s11

s22

s33

2pf

s23

s31

s12

D , ~52!
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n

sume
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1

Gdr

analogous to Eq.~1!.
We still have the condition that 2(S112S12)5S6651/Gdr for transverse isotropy as we did for the isotropic case. But n

the other two shear compliances (1/Gt) are decoupled from the values of theS’s in the upper left corner of the matrix. We ca
use an argument of Schoenberg and Douma@48# ~also see Schoenberg and Muir@49# and Dellinger, Muir, and Karrenbach@50#
for related concepts and techniques! to introduce the effects of the drained fractures/cracks into this matrix. And we as
here that this has already been done. The effects are localized and result in an increase in the compliancesS445S5551/Gt , and
S33 ~which implies a decrease in associated stiffnesses!.

Borrowing Gassmann’s argument for this case, we have

S e11

e22

e33

e23

e31

e12

D 51
S11

sat S12
sat S13

sat

S12
sat S11

sat S13
sat

S13
sat S13

sat S33
sat

1

Gt
sat

1

Gt
sat

1

Gsat

2 S s11

s22

s33

s23

s31

s12

D
53 1

S11 S12 S13

S12 S11 S13

S13 S13 S33

1

Gt

1

Gt

1

Gdr

2 2
1

g S ~b~1!!2 ~b~1!!2 b~1!b~3!

~b~1!!2 ~b~1!!2 b~1!b~3!

b~1!b~3! b~1!b~3! ~b~3!!2

0

0

0

D 4 S s11

s22

s33

s23

s31

s12

D . ~53!
id
y
c

o
a

wn,

trix
uni-
nts.
So, although this is more complicated than Eq.~1!, the result
is still basically the same: there is no obvious effect of flu
saturation on the shear modulus. Thus, local anisotrop
the form of transverse isotropy is still not enough to indu
the desired response.

Now we must be careful to account for all the effects
the anisotropy on interactions between shear stresses
01130
in
e

f
nd

change of volume. There are some subtle, but well-kno
effects contained in Eq.~53! that need to be elaborated.

1. Change of volume under shear

The elastic stiffness and compliance tensors, in the ma
form used here, have six eigenvectors. Four of them are
versal and independent of the values of the matrix eleme
3-9
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These four are

S 1
21
0
0
0
0

D ,S 0
0
0
1
0
0

D ,S 0
0
0
0
1
0

D ,S 0
0
0
0
0
1

D . ~54!

When applied to the compliance matrix, all four correspo
to states of pure shear, and have eigenvalues:S112S12, S44,
S555S44, andS66, respectively.

The remaining two eigenvectors correspond to coup
states of compression and shear. These eigenvectors c
written as

S 1
1

a1

0
0
0

D and S 1
1

22/a1

0
0
0

D , ~55!

wherea1 solves

S15S111S121a1S13,

S1a152S131a1S33, ~56!

andS1 is one of the eigenvalues, which satisfy

S65 1
2 @S331S111S126A~S332S112S12!

218S13
2 #.

~57!

Of these two solutions to Eq.~56!, a1 will normally turn out
to be the one closest to unity, while the other one (a2

522/a1) will be closest to22. Whena1.1, then the first
eigenvector in Eq.~55! is almost a pure compression and t
second is almost a pure shear. Otherwise, the eigenve
are mixed states, that might be called quasicompressi
and quasishear states, respectively.

We see now clearly why it is that, if we apply a pu
compression to the system, some local shearing must oc
As long as this coupling is contained in the eigenvectors,
unavoidable. There is no way to construct a compressio
state of this system that does not couple to shear. It is p
sible to construct some pure shear states that do not coup
compression using the first four eigenvectors in Eq.~54!, but
some interaction between compression and shear is neve
less guaranteed for such anisotropic systems.

(a). Bulk modulus bounds. Effective constants for the
overall isotropic system composed from random orientati
of the matrix ~53! can be determined approximately usin
Reuss@38# and Voigt @39# estimates, which are also know
to be rigorous bounds on the constants@51,52#. So, the best
results available for a general polycrystal@47# are the Reuss
lower bound and the Voigt upper bound. The Reuss bo
on the bulk modulus is
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~KR!2152S11
sat12S12

sat1S33
sat14S13

sat52S1112S121S3314S13

2~2b~1!1b~3!!2/g, ~58!

whereg5(2b (1)1b (3))/B, with B being Skempton’s pore
pressure buildup coefficient. The corresponding Voigt bou
is

KV5
1

9
~2C11

sat12C12
sat1C33

sat14C13
sat!

5
1

9
~2C1112C121C3314C13!1

a

9
~2a~1!1a~3!!2,

~59!

where thea’s andb’s are related by defining the appropria
column vectorsā and b̄, respectively, and noting thatb̄
5Sā and ā5Cb̄, with S andC being the drained compli-
ance and stiffness matrices, respectively. The constant c
ficient a in Eq. ~59! is determined by 1/a5g2āTSā.

For hexagonal symmetry~following Nye @53#!, we have
~the sat superscript will be dropped for now!

C111C125S33/S, ~60!

C112C1251/~S112S12!, ~61!

C1352S13/S, ~62!

C335~S111S12!/S, ~63!

and

C445C5551/S44, ~64!

with

S[S33~S111S12!22S13
2 . ~65!

These identities show that@after restoring the sat superscrip
and using Eq.~59!#

KV5
1

9Ssat~S11
sat1S12

sat12S33
sat24S13

sat!

5
1

9S
~S111S1212S3324S13!1

a

9
~2a~1!1a~3!!2.

~66!

Also, note that both the Reuss and Voigt bounds on b
modulus are always larger in the presence of the pore liq
~i.e., B.0! than in its absence. These results are autom
for Reuss and follow for Voigt ifa.0. When the TI medium
is almost isotropic, we find

1

a
.

2a~1!1a~3!

3BK
2F ~2a~1!1a~3!!2

9K
1

~a~3!2a~1!!2

3G G ,
~67!

which reduces to 1/a5a(12aB)/BK.0 when a5a (1)

5a (3). So, with these restrictions,a is positive if B,1/a.
For our examples, we only consider the range 0<B<1.
3-10
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(b). Shear modulus bounds. For the shear modulus, w
have the effects of the inhomogeneity showing up in
bounds because the shear can depend on the liquid prop
accordingly in the Reuss lower bound

~GR!215
1

15
~8S11

sat14S33
sat24S12

sat28S13
sat16S44

sat13S66
sat!

5
1

15
~8S1114S3324S1228S1316S4413S66!

2
4

15g
~b~3!2b~1!!2, ~68!

and the Voigt upper bound

GV5
1

15
~2C11

sat1C33
sat22C12

sat2C13
sat16C44

sat13C66
sat!

5
1

15
~2C111C3322C122C1316C4413C66!

1
a

15
a~3!~a~3!2a~1!!

5
1

15S 2

S112S12
1

6

S44
1

3

S66
1

S11
sat1S12

sat1S13
sat

Ssat D ,

~69!

where we have reinstated the sat superscript where appr
ate for clarity.

Using the Voigt-Reuss-Hill-type estimates@51# ~i.e., tak-
ing either the average or the geometric mean of the boun!,
we find that such estimates for the shear modulus now
depend on the pore liquid properties. Furthermore, the liq
contributions have a definite sign forGR , showing that the
lower bound on shear modulus~and by inference the shea
modulus itself! always increases due to the presence of
pore liquid. The sign of liquid corrections toGV in Eq. ~69!
is not difficult to analyze, and can be seen to depend on
sign of the differencea (3)2a (1). Using the identities relat-
ing the column vectorsā and b̄, we also find for TI media
close to isotropic that

a~3!~a~3!2a~1!!.2G@K~2b~1!1b~3!!1~4G/3!

3~b~3!2b~1!!#~b~3!2b~1!!. ~70!

Thus, the condition for increasingGV is eithera (3).a (1),
or, if we assume thatl5K22G/3.0, thenb (3).b (1). It is,
nevertheless, somewhat surprising that there areanycircum-
stances~even for choices of the parameters that do not se
very likely! in which the upper bound onG can decrease. We
will return to this point in the subsection on constraints.

(c). Numerical examples. To provide one numerical ex
ample of these results, we use measured values for a C
ceous shale as the drained constants@52#. Constants for the
drained hexagonal~TI! medium are given in Table II. Re
sults of the evaluations are shown in Figs. 2 and 3. Bes
the constants listed in Table II, we also needed values for
b’s. To emphasize the dependence of the shear modulu
the liquid properties, we have chosen to useb (1)
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50.001 476 andb (3)50.026 56 GPa21, for this example.
These choices are intended to mimic behavior of a sam
with cracks oriented normal to thex3 axis, having its stron-
gest liquid dependence normal to the crack and significa
less dependence parallel to the crack. We use Skempt
coefficientB as a proxy for frequency in the case of the she
modulus~but it does not act as a frequency proxy for t
bulk modulus!, the lowest values ofB corresponding to low-
frequency, Gassmann-like behavior of the shear modu
while the highest values ofB correspond to behavior ex
pected at high frequencies when liquid saturates the po
We find as predicted that the bulk modulus is the stron
function of the liquid properties, but that the shear modu
does indeed depend on them also. In this example, the V
bounds are seen to be monotonically increasing function
Skempton’s coefficientB for both moduli. The analysis
shows that this must be so for the Reuss bounds. Howe
both the analysis and some examples~not shown! indicate
the Voigt upper bound on the shear modulus can decre
slightly asB increases. For such cases, the Voigt-Reuss-
average will be almost constant, and may not capture the

TABLE II. Drained stiffnesses and compressibilities of a Cre
ceous shale, estimated from ultrasonic laboratory measuremen
suming hexagonal symmetry@54#. Stiffnesses are expressed in g
gapascals (1 GPa5109 N/m2).

ij C i j ~GPa! Si j ~GPa21!

11 34.3 0.0370
33 22.7 0.0560
44 5.4 0.1852
66 10.6 0.0943
13 10.7 20.0126

FIG. 2. Example of bulk modulus estimates obtained us
Reuss and Voigt bounds, and the Voigt-Reuss-Hill average. C
stants for the drained hexagonal~TI! medium are given in Table II.
Note that this figure provides graphical confirmation of the optim
ity @47# of the Voigt and Reuss bounds since they nearly meet h
at aboutB50.65. Stiffnesses are expressed in gigapascals (1
5109 N/m2!.
3-11
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behavior of the shear modulus. We see that there is a
stantial quantitative difference between the changes in
bulk and shear moduli, the bulk modulus changing by
much as 100% in this example, whereas the shear mod
changes by only about 10%.~Also, note that Fig. 2 provides
graphical confirmation of the optimality@47# of the Voigt
and Reuss bounds since they nearly meet here at aboB
50.7.!

The effective-medium approach being used here and il
trated in Figs. 2 and 3 falls short of proving that the sh
modulus is dependent on the pore liquid properties. A defi
tive example would show, for example, that the Voigt upp
bound atB50 lies below the Reuss lower bound atB51,
i.e., GV(B50),GR(B51). This does not occur in Fig. 3
but the results do strongly suggest dependence of the e
tive Gsat on the liquid properties. The next subsection w
provide an analytical example where it is easy to see that
shear modulus should increase when pore liquid is prese

A second numerical example is based on a complete s
poroelastic constants for Trafalgar shale from Cheng@55#
using data from Aoki, Tan, and Bamford@56# and the theo-
retical formulation of Thompson and Willis@57#. The main
elastic constant data are displayed in Table III. The res
are shown in Figs. 4 and 5. In addition to the data in Ta
III, Cheng quotes generalized Biot-Willis@19# parameters for

FIG. 3. Example of shear modulus estimates obtained using
uss and Voigt bounds, and the Voigt-Reuss-Hill average. Const
for the drained hexagonal~TI! medium are given in Table II. Othe
poroelastic constants are in the text.

TABLE III. Drained stiffnesses and compressibilities of Trafa
gar shale, as derived by Cheng@55# using data of Aoki, Tan, and
Bamford @56#.

ij C i j ~GPa! Si j ~GPa21!

11 24.1 0.0485
33 21.0 0.0578
44 7.23 0.1383
66 8.66 0.1155
13 7.62 20.0142
12 6.80 20.0092
01130
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the transversely isotropic shale having values ofa (1)

50.733 anda (3)50.749. These parameters can be shown
be related to theb’s in our formulation by the following
expressions: b (1)5a (1)(S111S12)1a (3)S13 and b (3)

52a (1)S131a (3)S33, giving values b (1)50.018 21 and
b (3)50.022 45 GPa21. Results obtained for this example a
qualitatively similar to those for the first example. The ma
difference is that the values of theb’s used here do not differ
as much, and therefore the dependence of the shear mod
on the liquid properties is not as great. We believe that
assumptions of microisotropy and microhomogeneity, wh
were used by Cheng@55# as a means to reduce the number
equations needed to determine the poroelastic constants
data, may in fact be stronger than necessary and lead dire
to the close values obtained here for theb’s.

e-
ts

FIG. 4. Example of bulk modulus estimates obtained using
uss and Voigt bounds, and the Voigt-Reuss-Hill average. Const
for the drained Trafalgar shale are given in Table III. This figu
provides further graphical confirmation of the optimality@47# of the
Voigt and Reuss bounds since they are very close over the e
range plotted here.

FIG. 5. Example of shear modulus estimates obtained using
uss and Voigt bounds, and the Voigt-Reuss-Hill average. Const
for the drained Trafalgar shale are given in Table III. Other p
roelastic constants are in the text.
3-12
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2. An alternative approach

We have shown that in principle the shear modulus
depend on properties of a liquid in the pores. The results
rather indirect, however, and it might be helpful to see
more explicit way for this behavior to develop in the equ
tions. Furthermore, the corrections to the shear modulus
expected on physical grounds to be positive. While expl
corrections of this type were found for the Reuss low
bound, it would be helpful to see how such corrections a
more intuitively from the mathematics.

Without enumerating all the remaining possible pertur
tions, we will now jump to another alternative, which mak
use of the fact that, in addition to being anisotropic, t
compliance matrix can be generalized to include some n
standard terms. The form of Eq.~52! does not permit us to
01130
n
re
a
-
re
it
r
e

-

n-

couple simple shear directly into either compression or p
pressure because there are no off-diagonal terms in the lo
part of the matrix. Terms that can be added are those
produce a change in volume under an applied shear st
and others that produce a change in shear strain und
compressional load~in this case pore pressure!. We think of
this, not as introducing new physics into the problem, b
merely as a book-keeping step to make the analysis sim
in this complex system under study.~The terms introduced
could be obtained instead by performing a coordinate tra
formation to a system not aligned with the principal axes
the compliance matrix.!

There are many possibilities to consider that wou
achieve the desired result, but the simplest apparently ha
form
equation
S e11

e22

e33

2z
e23

e31

e12

D 51
S11 S12 S13 2b (1)

S12 S11 S13 2b (1)

S13 S13 S33 2b (3)

2b (1) 2b (1) 2b (3) g 2v

1

Gt

1

Gt

2v
1

Gdr

2 S
s11

s22

s33

2pf

s23

s31

s12

D , ~71!

The only terms that are new here are those involvingv, which coupless12 to z and also couplespf to e12. Reciprocity
requires that both terms are present if either is present. For these purposes, we think of the strains on the left of the
as being resolved local strains, while the stresses on the right are global stresses.

Repeating Gassmann’s argument once more, we have

S e11

e22

e33

e23

e31

e12

D 51
S11

sat S12
sat S13

sat S16
sat

S12
sat S11

sat S13
sat S16

sat

S13
sat S13

sat S33
sat S36

sat

1

Gt
sat

1

Gt
sat

S16
sat S16

sat S36
sat 1

Gsat

2 S s11

s22

s33

s23

s31

s12

D
.3 1

S11 S12 S13

S12 S11 S13

S13 S13 S33

1

Gt

1

Gt

1

Gdr

2 2
1

g S (b (1))2 (b (1))2 b (1)b (3) b (1)v

(b (1))2 (b (1))2 b (1)b (3) b (1)v

b (1)b (3) b (1)b (3) (b (3))2 b (3))v

0

0

b (1)v b (1)v b (3)v v2

D 4 S s11

s22

s33

s23

s31

s12

D .

~72!
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Finally, we have a connection of the right type. We s
that 1/Gsat51/Gdr2v2/g, or equivalently that

Gsat5
Gdr

12Gdrv
2/g

, ~73!

showing that, sinceGdr>0 and g>0, the saturated~un-
drained! shear modulus always is larger than that of t
drained medium regardless of the sign of the new param
v. The form of Eq.~73! should also be compared to that
Ksat in Eq. ~13!.

3. Constraints on the parameters

We could now study the resulting system by examin
its eigenvectors and eigenvalues. Unfortunately, the modi
system is more complex than a transversely isotropic sys
It is actually monoclinic~see Nye@53#!. It is beyond our
present needs to study this full system, so we will simpl
and neglect the off-diagonal terms that make this sys
differ from TI. Doing so introduces no error in three of th
eigenvalues, but small errors of orderb2v2 in the remaining
three eigenvalues.

Once we have the constants for the saturated system
can obtain estimates of the effective overall isotropic c
stants by making use of the Voigt and Reuss bounds as
did in the previous example. This does not produce a
mula, but it does give us insight into how the liquid effec
can influence the overall isotropic shear modulus of a
roelastic system. Using Eqs.~58! and ~69! again shows tha
the effective shear modulus depends on the liquid proper

We also have requirements on the resulting matrix tha
be positive semidefinite. This amounts to the physical
quirement that the medium be mechanically stable, and
mathematical requirement that the eigenvalues all be n
negative. These requirements are therefore thatGt , Gsat,
S112S12, andS6 @from Eq. ~57!# must all be non-negative
This places four independent constraints~actually five con-
straints whenGsat is decoupled fromS112S12 as it is in a
monoclinic system! on any models we might want to con
sider. WhenS33.S11, we have the approximation that
<S2.S332S13

2 /S12, and 0<S1.S111S121S13
2 /S12,

which amount to a shear modulus constraint and a b
modulus constraint, respectively.

Finally, we should point out that if the off-diagonal term
S16

sat and S36
sat are retained in the Reuss and Voigt averag

then it is not difficult to show that the sign of correction d
to fluid effects forGV can now be guaranteed to be positi
if v>b (1)/12. Thus, relatively small corrections of the typ
presented here, which may be present in the real system
difficult to measure, could be affecting these systems
causing the shear modulus to increase in the presence o
pore liquid.

These various constraints@or their more accurate counte
parts for the exact expressions derived in Eq.~72!# should be
considered when doing forward modeling with these eq
tions to make sure that the stability criteria are always sa
fied.
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VI. DISCUSSION AND CONCLUSIONS

We have shown that there are two main issues affec
the possible occurrence of velocity dispersion in poroela
systems. The first issue concerns the time scales implic
assumed by Gassmann’s derivation and by effective-med
theory. Gassmann’s theory applies at very low frequenc
~long times!, and should be thought of as a quasistatic a
proach. Fluid permeability is required to be finite, pores
connected, and fluid can pass from one pore to another. F
pressure equilibrates through a diffusive process hav
characteristic time proportional to the square of distance
inversely proportional to the fluid permeability. In contra
effective-medium theory, although also formulated at lo
frequency, is not valid at such low frequencies as envisio
in the quasistatic picture of Gassmann. The ratio of wa
length to microstructural variations is the main parame
determining validity of the method, so the associated ti
period is the wave passage timeL/vp , ~with L5d, l, or l,
i.e., grain size, correlation length, or wavelength!. The prac-
tical difference is that Gassmann’s derivation permits liqu
to take as much time as it needs to equilibrate in pore p
sure across the whole sample. In contrast, effective-med
theory doesnot assume that different pockets of liquid hav
the same pore pressure values. Permeability in the effec
medium picture might be either finite or zero. The tim
scales of interest may therefore be too fast to achieve
equilibrated pressures needed by Gassmann’s argument

The implied frequency-dependent transition from fin
permeability to low or zero permeability can be understo
and described quantitatively by considering the freque
dependence of the permeability itself@58#. A complete
theory of this transition~which is beyond our present scop!
will therefore presumably couple the frequency depende
of the bulk and shear moduli to the frequency dependenc
the permeability.

Although these differences are the most obvious phys
ones and are important sources of discrepancy between
two approaches, they are not sufficient to explain the ra
of dispersion results observed in experiments. If they w
sufficient, then we would not be able to explain Plona’s
trasonic data on porous glass so well~Plona@3#, Chin, Ber-
ryman, and Hedstrom@4#, Johnson, Plona, and Kojima@5#!,
both qualitatively and quantitatively. There must be more
issue.

The second significant issue concerns the fact t
Gassmann’s arguments~as usually presented! do not treat the
porous medium as if it is inhomogeneous, whereas
effective-medium theory inherently does so. This differen
affects the results because in an inhomogeneous med
when fields are applied externally, the local impact to t
system can be very different from that of the applied fie
@45#. In particular, if a pure compressional stress is appl
externally, this may be resolved into local shear stresse
some points in an inhomogeneous medium. Similarly, i
pure shear stress is applied externally, this may be reso
into local compressional stresses at some points in the
dium. If the medium is porous, but the pores are empty~air
filled! or the pores are relatively rigid, then the effectiv
3-14
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medium theory and Gassmann are in agreement. But
porous medium, if the pores are filled with liquid and a
relatively compliant, then, for example, an external sh
stress can be resolved into a local compressional stress
acts on the pore liquid. Elastic energy can then be store
the liquid—energy that would not be stored in the pores
the absence of the liquid. Energy also would not be store
the liquid were not trapped~finite vs zero permeability!, so
that no compression of the liquid occurred~some liquid es-
capes the volume, thus avoiding compression!.

The mathematical expression of these physical argum
has been shown in one example~for transverse isotropy! to
follow simply from the fact that, in anisotropic poroelast
media, it is expected that at least two of the eigenvector
the system will contain coupled compressional and shear
havior. Since an inhomogeneous medium may be locally
isotropic~depending on the degree of inhomogeneity!, this is
sufficient to establish our main result.

This effect can be very small in some situations, such a
porous medium with finite permeability but isotropic on t
microscale, or it can be quite large for a very similar mediu
that is anisotropic on the microscale, as would be the cas
randomly oriented liquid-filled fractures/cracks were pres
in the system@59#.

A porous glass system that is uniform on the microsc
might very well obey Gassmann’s equations all the way
to frequencies at the low end of the megahertz band~before
scattering effects become important!, while naturally occur-
ring porous systems such as rocks containing microcra
y
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might have observable frequency dispersion that sets i
frequencies as low as a few kilohertz. Both kinds of syste
~as long as both have finite permeability! would, however,
still be expected to obey Gassmann’s equations at m
lower ~quasistatic! frequencies.

The main consequence of the foregoing analysis is
differences in shear modulus induced by the presence of
uid in the pores must be explicitly incorporated into t
theory at ultrasonic frequencies when attempting to comp
theory to laboratory experimental data. Carrying this strate
through will be the subject of future work.
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